Information on Result #716279
Linear OA(8117, 529, F8, 43) (dual of [529, 412, 44]-code), using construction XX applied to C1 = C([32,72]), C2 = C([36,74]), C3 = C1 + C2 = C([36,72]), and C∩ = C1 ∩ C2 = C([32,74]) based on
- linear OA(8108, 511, F8, 41) (dual of [511, 403, 42]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {32,33,…,72}, and designed minimum distance d ≥ |I|+1 = 42 [i]
- linear OA(8103, 511, F8, 39) (dual of [511, 408, 40]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {36,37,…,74}, and designed minimum distance d ≥ |I|+1 = 40 [i]
- linear OA(8112, 511, F8, 43) (dual of [511, 399, 44]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {32,33,…,74}, and designed minimum distance d ≥ |I|+1 = 44 [i]
- linear OA(899, 511, F8, 37) (dual of [511, 412, 38]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {36,37,…,72}, and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(84, 13, F8, 3) (dual of [13, 9, 4]-code or 13-cap in PG(3,8)), using
- linear OA(81, 5, F8, 1) (dual of [5, 4, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
- Reed–Solomon code RS(7,8) [i]
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.