Information on Result #716343
Linear OA(8114, 522, F8, 43) (dual of [522, 408, 44]-code), using construction XX applied to C1 = C([32,73]), C2 = C([35,74]), C3 = C1 + C2 = C([35,73]), and C∩ = C1 ∩ C2 = C([32,74]) based on
- linear OA(8109, 511, F8, 42) (dual of [511, 402, 43]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {32,33,…,73}, and designed minimum distance d ≥ |I|+1 = 43 [i]
- linear OA(8106, 511, F8, 40) (dual of [511, 405, 41]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {35,36,…,74}, and designed minimum distance d ≥ |I|+1 = 41 [i]
- linear OA(8112, 511, F8, 43) (dual of [511, 399, 44]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {32,33,…,74}, and designed minimum distance d ≥ |I|+1 = 44 [i]
- linear OA(8103, 511, F8, 39) (dual of [511, 408, 40]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {35,36,…,73}, and designed minimum distance d ≥ |I|+1 = 40 [i]
- linear OA(82, 8, F8, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,8)), using
- Reed–Solomon code RS(6,8) [i]
- linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(8114, 261, F8, 2, 43) (dual of [(261, 2), 408, 44]-NRT-code) | [i] | OOA Folding |