Information on Result #716369
Linear OA(8120, 531, F8, 44) (dual of [531, 411, 45]-code), using construction XX applied to C1 = C([32,73]), C2 = C([36,75]), C3 = C1 + C2 = C([36,73]), and C∩ = C1 ∩ C2 = C([32,75]) based on
- linear OA(8109, 511, F8, 42) (dual of [511, 402, 43]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {32,33,…,73}, and designed minimum distance d ≥ |I|+1 = 43 [i]
- linear OA(8106, 511, F8, 40) (dual of [511, 405, 41]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {36,37,…,75}, and designed minimum distance d ≥ |I|+1 = 41 [i]
- linear OA(8115, 511, F8, 44) (dual of [511, 396, 45]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {32,33,…,75}, and designed minimum distance d ≥ |I|+1 = 45 [i]
- linear OA(8100, 511, F8, 38) (dual of [511, 411, 39]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {36,37,…,73}, and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(84, 13, F8, 3) (dual of [13, 9, 4]-code or 13-cap in PG(3,8)), using
- linear OA(81, 7, F8, 1) (dual of [7, 6, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
- Reed–Solomon code RS(7,8) [i]
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.