Information on Result #716568
Linear OA(8140, 536, F8, 51) (dual of [536, 396, 52]-code), using construction XX applied to C1 = C([24,73]), C2 = C([30,74]), C3 = C1 + C2 = C([30,73]), and C∩ = C1 ∩ C2 = C([24,74]) based on
- linear OA(8130, 511, F8, 50) (dual of [511, 381, 51]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {24,25,…,73}, and designed minimum distance d ≥ |I|+1 = 51 [i]
- linear OA(8118, 511, F8, 45) (dual of [511, 393, 46]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {30,31,…,74}, and designed minimum distance d ≥ |I|+1 = 46 [i]
- linear OA(8133, 511, F8, 51) (dual of [511, 378, 52]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {24,25,…,74}, and designed minimum distance d ≥ |I|+1 = 52 [i]
- linear OA(8115, 511, F8, 44) (dual of [511, 396, 45]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {30,31,…,73}, and designed minimum distance d ≥ |I|+1 = 45 [i]
- linear OA(87, 22, F8, 5) (dual of [22, 15, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(87, 57, F8, 5) (dual of [57, 50, 6]-code), using
- linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(8140, 268, F8, 2, 51) (dual of [(268, 2), 396, 52]-NRT-code) | [i] | OOA Folding |