Information on Result #716640
Linear OA(8132, 522, F8, 50) (dual of [522, 390, 51]-code), using construction XX applied to C1 = C([25,73]), C2 = C([28,74]), C3 = C1 + C2 = C([28,73]), and C∩ = C1 ∩ C2 = C([25,74]) based on
- linear OA(8127, 511, F8, 49) (dual of [511, 384, 50]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {25,26,…,73}, and designed minimum distance d ≥ |I|+1 = 50 [i]
- linear OA(8124, 511, F8, 47) (dual of [511, 387, 48]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {28,29,…,74}, and designed minimum distance d ≥ |I|+1 = 48 [i]
- linear OA(8130, 511, F8, 50) (dual of [511, 381, 51]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {25,26,…,74}, and designed minimum distance d ≥ |I|+1 = 51 [i]
- linear OA(8121, 511, F8, 46) (dual of [511, 390, 47]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {28,29,…,73}, and designed minimum distance d ≥ |I|+1 = 47 [i]
- linear OA(82, 8, F8, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,8)), using
- Reed–Solomon code RS(6,8) [i]
- linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(8132, 261, F8, 2, 50) (dual of [(261, 2), 390, 51]-NRT-code) | [i] | OOA Folding |