Information on Result #716652
Linear OA(8141, 528, F8, 52) (dual of [528, 387, 53]-code), using construction XX applied to C1 = C([23,73]), C2 = C([28,74]), C3 = C1 + C2 = C([28,73]), and C∩ = C1 ∩ C2 = C([23,74]) based on
- linear OA(8133, 511, F8, 51) (dual of [511, 378, 52]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {23,24,…,73}, and designed minimum distance d ≥ |I|+1 = 52 [i]
- linear OA(8124, 511, F8, 47) (dual of [511, 387, 48]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {28,29,…,74}, and designed minimum distance d ≥ |I|+1 = 48 [i]
- linear OA(8136, 511, F8, 52) (dual of [511, 375, 53]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {23,24,…,74}, and designed minimum distance d ≥ |I|+1 = 53 [i]
- linear OA(8121, 511, F8, 46) (dual of [511, 390, 47]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {28,29,…,73}, and designed minimum distance d ≥ |I|+1 = 47 [i]
- linear OA(85, 14, F8, 4) (dual of [14, 9, 5]-code), using
- extended algebraic-geometric code AGe(F,9P) [i] based on function field F/F8 with g(F) = 1 and N(F) ≥ 14, using
- linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.