Information on Result #716654
Linear OA(8146, 536, F8, 53) (dual of [536, 390, 54]-code), using construction XX applied to C1 = C([22,73]), C2 = C([28,74]), C3 = C1 + C2 = C([28,73]), and C∩ = C1 ∩ C2 = C([22,74]) based on
- linear OA(8136, 511, F8, 52) (dual of [511, 375, 53]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {22,23,…,73}, and designed minimum distance d ≥ |I|+1 = 53 [i]
- linear OA(8124, 511, F8, 47) (dual of [511, 387, 48]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {28,29,…,74}, and designed minimum distance d ≥ |I|+1 = 48 [i]
- linear OA(8139, 511, F8, 53) (dual of [511, 372, 54]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {22,23,…,74}, and designed minimum distance d ≥ |I|+1 = 54 [i]
- linear OA(8121, 511, F8, 46) (dual of [511, 390, 47]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {28,29,…,73}, and designed minimum distance d ≥ |I|+1 = 47 [i]
- linear OA(87, 22, F8, 5) (dual of [22, 15, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(87, 57, F8, 5) (dual of [57, 50, 6]-code), using
- linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(8146, 268, F8, 2, 53) (dual of [(268, 2), 390, 54]-NRT-code) | [i] | OOA Folding |