Information on Result #717006
Linear OA(8156, 522, F8, 59) (dual of [522, 366, 60]-code), using construction XX applied to C1 = C([16,73]), C2 = C([19,74]), C3 = C1 + C2 = C([19,73]), and C∩ = C1 ∩ C2 = C([16,74]) based on
- linear OA(8151, 511, F8, 58) (dual of [511, 360, 59]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {16,17,…,73}, and designed minimum distance d ≥ |I|+1 = 59 [i]
- linear OA(8148, 511, F8, 56) (dual of [511, 363, 57]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {19,20,…,74}, and designed minimum distance d ≥ |I|+1 = 57 [i]
- linear OA(8154, 511, F8, 59) (dual of [511, 357, 60]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {16,17,…,74}, and designed minimum distance d ≥ |I|+1 = 60 [i]
- linear OA(8145, 511, F8, 55) (dual of [511, 366, 56]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {19,20,…,73}, and designed minimum distance d ≥ |I|+1 = 56 [i]
- linear OA(82, 8, F8, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,8)), using
- Reed–Solomon code RS(6,8) [i]
- linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(8156, 261, F8, 2, 59) (dual of [(261, 2), 366, 60]-NRT-code) | [i] | OOA Folding |