Information on Result #717014
Linear OA(8162, 531, F8, 60) (dual of [531, 369, 61]-code), using construction XX applied to C1 = C([16,73]), C2 = C([20,75]), C3 = C1 + C2 = C([20,73]), and C∩ = C1 ∩ C2 = C([16,75]) based on
- linear OA(8151, 511, F8, 58) (dual of [511, 360, 59]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {16,17,…,73}, and designed minimum distance d ≥ |I|+1 = 59 [i]
- linear OA(8148, 511, F8, 56) (dual of [511, 363, 57]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {20,21,…,75}, and designed minimum distance d ≥ |I|+1 = 57 [i]
- linear OA(8157, 511, F8, 60) (dual of [511, 354, 61]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {16,17,…,75}, and designed minimum distance d ≥ |I|+1 = 61 [i]
- linear OA(8142, 511, F8, 54) (dual of [511, 369, 55]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {20,21,…,73}, and designed minimum distance d ≥ |I|+1 = 55 [i]
- linear OA(84, 13, F8, 3) (dual of [13, 9, 4]-code or 13-cap in PG(3,8)), using
- linear OA(81, 7, F8, 1) (dual of [7, 6, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
- Reed–Solomon code RS(7,8) [i]
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.