Information on Result #717255
Linear OA(840, 597, F8, 12) (dual of [597, 557, 13]-code), using construction XX applied to C1 = C([251,261]), C2 = C([250,258]), C3 = C1 + C2 = C([251,258]), and C∩ = C1 ∩ C2 = C([250,261]) based on
- linear OA(834, 585, F8, 11) (dual of [585, 551, 12]-code), using the BCH-code C(I) with length 585 | 84−1, defining interval I = {251,252,…,261}, and designed minimum distance d ≥ |I|+1 = 12 [i]
- linear OA(832, 585, F8, 9) (dual of [585, 553, 10]-code), using the BCH-code C(I) with length 585 | 84−1, defining interval I = {250,251,…,258}, and designed minimum distance d ≥ |I|+1 = 10 [i]
- linear OA(838, 585, F8, 12) (dual of [585, 547, 13]-code), using the BCH-code C(I) with length 585 | 84−1, defining interval I = {250,251,…,261}, and designed minimum distance d ≥ |I|+1 = 13 [i]
- linear OA(828, 585, F8, 8) (dual of [585, 557, 9]-code), using the BCH-code C(I) with length 585 | 84−1, defining interval I = {251,252,…,258}, and designed minimum distance d ≥ |I|+1 = 9 [i]
- linear OA(82, 8, F8, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,8)), using
- Reed–Solomon code RS(6,8) [i]
- linear OA(80, 4, F8, 0) (dual of [4, 4, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(840, 298, F8, 2, 12) (dual of [(298, 2), 556, 13]-NRT-code) | [i] | OOA Folding | |
2 | Linear OOA(840, 199, F8, 3, 12) (dual of [(199, 3), 557, 13]-NRT-code) | [i] |