Information on Result #717342
Linear OA(8131, 599, F8, 39) (dual of [599, 468, 40]-code), using construction XX applied to C1 = C([213,250]), C2 = C([217,251]), C3 = C1 + C2 = C([217,250]), and C∩ = C1 ∩ C2 = C([213,251]) based on
- linear OA(8124, 585, F8, 38) (dual of [585, 461, 39]-code), using the BCH-code C(I) with length 585 | 84−1, defining interval I = {213,214,…,250}, and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(8120, 585, F8, 35) (dual of [585, 465, 36]-code), using the BCH-code C(I) with length 585 | 84−1, defining interval I = {217,218,…,251}, and designed minimum distance d ≥ |I|+1 = 36 [i]
- linear OA(8128, 585, F8, 39) (dual of [585, 457, 40]-code), using the BCH-code C(I) with length 585 | 84−1, defining interval I = {213,214,…,251}, and designed minimum distance d ≥ |I|+1 = 40 [i]
- linear OA(8116, 585, F8, 34) (dual of [585, 469, 35]-code), using the BCH-code C(I) with length 585 | 84−1, defining interval I = {217,218,…,250}, and designed minimum distance d ≥ |I|+1 = 35 [i]
- linear OA(83, 10, F8, 3) (dual of [10, 7, 4]-code or 10-arc in PG(2,8) or 10-cap in PG(2,8)), using
- linear OA(80, 4, F8, 0) (dual of [4, 4, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(8131, 299, F8, 2, 39) (dual of [(299, 2), 467, 40]-NRT-code) | [i] | OOA Folding |