Information on Result #717488
Linear OA(8115, 832, F8, 34) (dual of [832, 717, 35]-code), using construction XX applied to C1 = C([85,117]), C2 = C([88,118]), C3 = C1 + C2 = C([88,117]), and C∩ = C1 ∩ C2 = C([85,118]) based on
- linear OA(8109, 819, F8, 33) (dual of [819, 710, 34]-code), using the BCH-code C(I) with length 819 | 84−1, defining interval I = {85,86,…,117}, and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(8105, 819, F8, 31) (dual of [819, 714, 32]-code), using the BCH-code C(I) with length 819 | 84−1, defining interval I = {88,89,…,118}, and designed minimum distance d ≥ |I|+1 = 32 [i]
- linear OA(8113, 819, F8, 34) (dual of [819, 706, 35]-code), using the BCH-code C(I) with length 819 | 84−1, defining interval I = {85,86,…,118}, and designed minimum distance d ≥ |I|+1 = 35 [i]
- linear OA(8101, 819, F8, 30) (dual of [819, 718, 31]-code), using the BCH-code C(I) with length 819 | 84−1, defining interval I = {88,89,…,117}, and designed minimum distance d ≥ |I|+1 = 31 [i]
- linear OA(82, 9, F8, 2) (dual of [9, 7, 3]-code or 9-arc in PG(1,8)), using
- extended Reed–Solomon code RSe(7,8) [i]
- Hamming code H(2,8) [i]
- linear OA(80, 4, F8, 0) (dual of [4, 4, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(8115, 416, F8, 2, 34) (dual of [(416, 2), 717, 35]-NRT-code) | [i] | OOA Folding | |
2 | Linear OOA(8115, 277, F8, 3, 34) (dual of [(277, 3), 716, 35]-NRT-code) | [i] |