Information on Result #717613

Linear OA(922, 87, F9, 12) (dual of [87, 65, 13]-code), using construction XX applied to C1 = C([0,10]), C2 = C([3,11]), C3 = C1 + C2 = C([3,10]), and C∩ = C1 ∩ C2 = C([0,11]) based on
  1. linear OA(918, 80, F9, 11) (dual of [80, 62, 12]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,10], and designed minimum distance d ≥ |I|+1 = 12 [i]
  2. linear OA(917, 80, F9, 9) (dual of [80, 63, 10]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {3,4,…,11}, and designed minimum distance d ≥ |I|+1 = 10 [i]
  3. linear OA(920, 80, F9, 12) (dual of [80, 60, 13]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,11], and designed minimum distance d ≥ |I|+1 = 13 [i]
  4. linear OA(915, 80, F9, 8) (dual of [80, 65, 9]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {3,4,…,10}, and designed minimum distance d ≥ |I|+1 = 9 [i]
  5. linear OA(92, 5, F9, 2) (dual of [5, 3, 3]-code or 5-arc in PG(1,9)), using
  6. linear OA(90, 2, F9, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(922, 43, F9, 2, 12) (dual of [(43, 2), 64, 13]-NRT-code) [i]OOA Folding
2Linear OOA(922, 29, F9, 3, 12) (dual of [(29, 3), 65, 13]-NRT-code) [i]