Information on Result #717619
Linear OA(929, 92, F9, 15) (dual of [92, 63, 16]-code), using construction XX applied to C1 = C([77,10]), C2 = C([1,11]), C3 = C1 + C2 = C([1,10]), and C∩ = C1 ∩ C2 = C([77,11]) based on
- linear OA(924, 80, F9, 14) (dual of [80, 56, 15]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−3,−2,…,10}, and designed minimum distance d ≥ |I|+1 = 15 [i]
- linear OA(919, 80, F9, 11) (dual of [80, 61, 12]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,11], and designed minimum distance d ≥ |I|+1 = 12 [i]
- linear OA(926, 80, F9, 15) (dual of [80, 54, 16]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−3,−2,…,11}, and designed minimum distance d ≥ |I|+1 = 16 [i]
- linear OA(917, 80, F9, 10) (dual of [80, 63, 11]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,10], and designed minimum distance d ≥ |I|+1 = 11 [i]
- linear OA(93, 10, F9, 3) (dual of [10, 7, 4]-code or 10-arc in PG(2,9) or 10-cap in PG(2,9)), using
- extended Reed–Solomon code RSe(7,9) [i]
- oval in PG(2, 9) [i]
- linear OA(90, 2, F9, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(929, 46, F9, 2, 15) (dual of [(46, 2), 63, 16]-NRT-code) | [i] | OOA Folding |