Information on Result #717632

Linear OA(924, 84, F9, 14) (dual of [84, 60, 15]-code), using construction XX applied to C1 = C([79,11]), C2 = C([0,12]), C3 = C1 + C2 = C([0,11]), and C∩ = C1 ∩ C2 = C([79,12]) based on
  1. linear OA(922, 80, F9, 13) (dual of [80, 58, 14]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−1,0,…,11}, and designed minimum distance d ≥ |I|+1 = 14 [i]
  2. linear OA(922, 80, F9, 13) (dual of [80, 58, 14]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,12], and designed minimum distance d ≥ |I|+1 = 14 [i]
  3. linear OA(924, 80, F9, 14) (dual of [80, 56, 15]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−1,0,…,12}, and designed minimum distance d ≥ |I|+1 = 15 [i]
  4. linear OA(920, 80, F9, 12) (dual of [80, 60, 13]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,11], and designed minimum distance d ≥ |I|+1 = 13 [i]
  5. linear OA(90, 2, F9, 0) (dual of [2, 2, 1]-code), using
  6. linear OA(90, 2, F9, 0) (dual of [2, 2, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(9150, 59138, F9, 29) (dual of [59138, 58988, 30]-code) [i](u, u+v)-Construction
2Linear OOA(924, 42, F9, 2, 14) (dual of [(42, 2), 60, 15]-NRT-code) [i]OOA Folding
3Linear OOA(924, 28, F9, 3, 14) (dual of [(28, 3), 60, 15]-NRT-code) [i]