Information on Result #717657

Linear OA(928, 84, F9, 16) (dual of [84, 56, 17]-code), using construction XX applied to C1 = C([79,13]), C2 = C([0,14]), C3 = C1 + C2 = C([0,13]), and C∩ = C1 ∩ C2 = C([79,14]) based on
  1. linear OA(926, 80, F9, 15) (dual of [80, 54, 16]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−1,0,…,13}, and designed minimum distance d ≥ |I|+1 = 16 [i]
  2. linear OA(926, 80, F9, 15) (dual of [80, 54, 16]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,14], and designed minimum distance d ≥ |I|+1 = 16 [i]
  3. linear OA(928, 80, F9, 16) (dual of [80, 52, 17]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−1,0,…,14}, and designed minimum distance d ≥ |I|+1 = 17 [i]
  4. linear OA(924, 80, F9, 14) (dual of [80, 56, 15]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,13], and designed minimum distance d ≥ |I|+1 = 15 [i]
  5. linear OA(90, 2, F9, 0) (dual of [2, 2, 1]-code), using
  6. linear OA(90, 2, F9, 0) (dual of [2, 2, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(928, 42, F9, 2, 16) (dual of [(42, 2), 56, 17]-NRT-code) [i]OOA Folding
2Linear OOA(928, 28, F9, 3, 16) (dual of [(28, 3), 56, 17]-NRT-code) [i]