Information on Result #717680

Linear OA(947, 100, F9, 24) (dual of [100, 53, 25]-code), using construction XX applied to C1 = C([78,20]), C2 = C([6,21]), C3 = C1 + C2 = C([6,20]), and C∩ = C1 ∩ C2 = C([78,21]) based on
  1. linear OA(937, 80, F9, 23) (dual of [80, 43, 24]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−2,−1,…,20}, and designed minimum distance d ≥ |I|+1 = 24 [i]
  2. linear OA(928, 80, F9, 16) (dual of [80, 52, 17]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {6,7,…,21}, and designed minimum distance d ≥ |I|+1 = 17 [i]
  3. linear OA(939, 80, F9, 24) (dual of [80, 41, 25]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−2,−1,…,21}, and designed minimum distance d ≥ |I|+1 = 25 [i]
  4. linear OA(926, 80, F9, 15) (dual of [80, 54, 16]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {6,7,…,20}, and designed minimum distance d ≥ |I|+1 = 16 [i]
  5. linear OA(98, 18, F9, 7) (dual of [18, 10, 8]-code), using
  6. linear OA(90, 2, F9, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(947, 50, F9, 2, 24) (dual of [(50, 2), 53, 25]-NRT-code) [i]OOA Folding