Information on Result #717683

Linear OA(945, 101, F9, 23) (dual of [101, 56, 24]-code), using construction XX applied to C1 = C([0,20]), C2 = C([7,22]), C3 = C1 + C2 = C([7,20]), and C∩ = C1 ∩ C2 = C([0,22]) based on
  1. linear OA(933, 80, F9, 21) (dual of [80, 47, 22]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,20], and designed minimum distance d ≥ |I|+1 = 22 [i]
  2. linear OA(928, 80, F9, 16) (dual of [80, 52, 17]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {7,8,…,22}, and designed minimum distance d ≥ |I|+1 = 17 [i]
  3. linear OA(937, 80, F9, 23) (dual of [80, 43, 24]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,22], and designed minimum distance d ≥ |I|+1 = 24 [i]
  4. linear OA(924, 80, F9, 14) (dual of [80, 56, 15]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {7,8,…,20}, and designed minimum distance d ≥ |I|+1 = 15 [i]
  5. linear OA(97, 16, F9, 6) (dual of [16, 9, 7]-code), using
  6. linear OA(91, 5, F9, 1) (dual of [5, 4, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.