Information on Result #717689

Linear OA(940, 93, F9, 22) (dual of [93, 53, 23]-code), using construction XX applied to C1 = C([0,19]), C2 = C([5,21]), C3 = C1 + C2 = C([5,19]), and C∩ = C1 ∩ C2 = C([0,21]) based on
  1. linear OA(932, 80, F9, 20) (dual of [80, 48, 21]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,19], and designed minimum distance d ≥ |I|+1 = 21 [i]
  2. linear OA(930, 80, F9, 17) (dual of [80, 50, 18]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {5,6,…,21}, and designed minimum distance d ≥ |I|+1 = 18 [i]
  3. linear OA(935, 80, F9, 22) (dual of [80, 45, 23]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,21], and designed minimum distance d ≥ |I|+1 = 23 [i]
  4. linear OA(927, 80, F9, 15) (dual of [80, 53, 16]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {5,6,…,19}, and designed minimum distance d ≥ |I|+1 = 16 [i]
  5. linear OA(94, 9, F9, 4) (dual of [9, 5, 5]-code or 9-arc in PG(3,9)), using
  6. linear OA(91, 4, F9, 1) (dual of [4, 3, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.