Information on Result #717695

Linear OA(943, 95, F9, 23) (dual of [95, 52, 24]-code), using construction XX applied to C1 = C([79,20]), C2 = C([5,21]), C3 = C1 + C2 = C([5,20]), and C∩ = C1 ∩ C2 = C([79,21]) based on
  1. linear OA(935, 80, F9, 22) (dual of [80, 45, 23]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−1,0,…,20}, and designed minimum distance d ≥ |I|+1 = 23 [i]
  2. linear OA(930, 80, F9, 17) (dual of [80, 50, 18]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {5,6,…,21}, and designed minimum distance d ≥ |I|+1 = 18 [i]
  3. linear OA(937, 80, F9, 23) (dual of [80, 43, 24]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−1,0,…,21}, and designed minimum distance d ≥ |I|+1 = 24 [i]
  4. linear OA(928, 80, F9, 16) (dual of [80, 52, 17]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {5,6,…,20}, and designed minimum distance d ≥ |I|+1 = 17 [i]
  5. linear OA(96, 13, F9, 5) (dual of [13, 7, 6]-code), using
  6. linear OA(90, 2, F9, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.