Information on Result #717699

Linear OA(941, 80, F9, 25) (dual of [80, 39, 26]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−3,−2,…,21}, and designed minimum distance d ≥ |I|+1 = 26

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(3242, 320, F3, 77) (dual of [320, 78, 78]-code) [i]Concatenation of Two Codes
2Linear OA(3240, 316, F3, 77) (dual of [316, 76, 78]-code) [i]
3Linear OA(3238, 312, F3, 77) (dual of [312, 74, 78]-code) [i]
4Linear OA(949, 100, F9, 25) (dual of [100, 51, 26]-code) [i]Construction XX with Cyclic Codes
5Linear OA(948, 98, F9, 25) (dual of [98, 50, 26]-code) [i]
6Linear OA(943, 90, F9, 25) (dual of [90, 47, 26]-code) [i]
7Linear OA(945, 90, F9, 26) (dual of [90, 45, 27]-code) [i]
8Linear OA(948, 93, F9, 27) (dual of [93, 45, 28]-code) [i]