Information on Result #717719

Linear OA(944, 94, F9, 24) (dual of [94, 50, 25]-code), using construction XX applied to C1 = C([79,20]), C2 = C([4,22]), C3 = C1 + C2 = C([4,20]), and C∩ = C1 ∩ C2 = C([79,22]) based on
  1. linear OA(935, 80, F9, 22) (dual of [80, 45, 23]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−1,0,…,20}, and designed minimum distance d ≥ |I|+1 = 23 [i]
  2. linear OA(934, 80, F9, 19) (dual of [80, 46, 20]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {4,5,…,22}, and designed minimum distance d ≥ |I|+1 = 20 [i]
  3. linear OA(939, 80, F9, 24) (dual of [80, 41, 25]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−1,0,…,22}, and designed minimum distance d ≥ |I|+1 = 25 [i]
  4. linear OA(930, 80, F9, 17) (dual of [80, 50, 18]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {4,5,…,20}, and designed minimum distance d ≥ |I|+1 = 18 [i]
  5. linear OA(94, 9, F9, 4) (dual of [9, 5, 5]-code or 9-arc in PG(3,9)), using
  6. linear OA(91, 5, F9, 1) (dual of [5, 4, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(944, 47, F9, 2, 24) (dual of [(47, 2), 50, 25]-NRT-code) [i]OOA Folding