Information on Result #717726

Linear OA(957, 107, F9, 29) (dual of [107, 50, 30]-code), using construction XX applied to C1 = C([71,14]), C2 = C([0,19]), C3 = C1 + C2 = C([0,14]), and C∩ = C1 ∩ C2 = C([71,19]) based on
  1. linear OA(940, 80, F9, 24) (dual of [80, 40, 25]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−9,−8,…,14}, and designed minimum distance d ≥ |I|+1 = 25 [i]
  2. linear OA(932, 80, F9, 20) (dual of [80, 48, 21]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,19], and designed minimum distance d ≥ |I|+1 = 21 [i]
  3. linear OA(944, 80, F9, 29) (dual of [80, 36, 30]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−9,−8,…,19}, and designed minimum distance d ≥ |I|+1 = 30 [i]
  4. linear OA(926, 80, F9, 15) (dual of [80, 54, 16]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,14], and designed minimum distance d ≥ |I|+1 = 16 [i]
  5. linear OA(99, 19, F9, 8) (dual of [19, 10, 9]-code), using
  6. linear OA(94, 8, F9, 4) (dual of [8, 4, 5]-code or 8-arc in PG(3,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.