Information on Result #717736

Linear OA(956, 106, F9, 29) (dual of [106, 50, 30]-code), using construction XX applied to C1 = C([6,29]), C2 = C([1,21]), C3 = C1 + C2 = C([6,21]), and C∩ = C1 ∩ C2 = C([1,29]) based on
  1. linear OA(940, 80, F9, 24) (dual of [80, 40, 25]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {6,7,…,29}, and designed minimum distance d ≥ |I|+1 = 25 [i]
  2. linear OA(934, 80, F9, 21) (dual of [80, 46, 22]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,21], and designed minimum distance d ≥ |I|+1 = 22 [i]
  3. linear OA(944, 80, F9, 29) (dual of [80, 36, 30]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,29], and designed minimum distance d ≥ |I|+1 = 30 [i]
  4. linear OA(928, 80, F9, 16) (dual of [80, 52, 17]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {6,7,…,21}, and designed minimum distance d ≥ |I|+1 = 17 [i]
  5. linear OA(98, 18, F9, 7) (dual of [18, 10, 8]-code), using
  6. linear OA(94, 8, F9, 4) (dual of [8, 4, 5]-code or 8-arc in PG(3,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(955, 105, F9, 28) (dual of [105, 50, 29]-code) [i]Truncation
2Linear OOA(956, 53, F9, 2, 29) (dual of [(53, 2), 50, 30]-NRT-code) [i]OOA Folding