Information on Result #717757

Linear OA(959, 104, F9, 32) (dual of [104, 45, 33]-code), using construction XX applied to C1 = C([70,19]), C2 = C([0,21]), C3 = C1 + C2 = C([0,19]), and C∩ = C1 ∩ C2 = C([70,21]) based on
  1. linear OA(945, 80, F9, 30) (dual of [80, 35, 31]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−10,−9,…,19}, and designed minimum distance d ≥ |I|+1 = 31 [i]
  2. linear OA(935, 80, F9, 22) (dual of [80, 45, 23]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,21], and designed minimum distance d ≥ |I|+1 = 23 [i]
  3. linear OA(948, 80, F9, 32) (dual of [80, 32, 33]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−10,−9,…,21}, and designed minimum distance d ≥ |I|+1 = 33 [i]
  4. linear OA(932, 80, F9, 20) (dual of [80, 48, 21]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,19], and designed minimum distance d ≥ |I|+1 = 21 [i]
  5. linear OA(910, 20, F9, 9) (dual of [20, 10, 10]-code), using
  6. linear OA(91, 4, F9, 1) (dual of [4, 3, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(959, 52, F9, 2, 32) (dual of [(52, 2), 45, 33]-NRT-code) [i]OOA Folding