Information on Result #717780

Linear OA(949, 95, F9, 27) (dual of [95, 46, 28]-code), using construction XX applied to C1 = C([76,20]), C2 = C([0,22]), C3 = C1 + C2 = C([0,20]), and C∩ = C1 ∩ C2 = C([76,22]) based on
  1. linear OA(941, 80, F9, 25) (dual of [80, 39, 26]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−4,−3,…,20}, and designed minimum distance d ≥ |I|+1 = 26 [i]
  2. linear OA(937, 80, F9, 23) (dual of [80, 43, 24]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,22], and designed minimum distance d ≥ |I|+1 = 24 [i]
  3. linear OA(945, 80, F9, 27) (dual of [80, 35, 28]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−4,−3,…,22}, and designed minimum distance d ≥ |I|+1 = 28 [i]
  4. linear OA(933, 80, F9, 21) (dual of [80, 47, 22]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,20], and designed minimum distance d ≥ |I|+1 = 22 [i]
  5. linear OA(93, 10, F9, 3) (dual of [10, 7, 4]-code or 10-arc in PG(2,9) or 10-cap in PG(2,9)), using
  6. linear OA(91, 5, F9, 1) (dual of [5, 4, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.