Information on Result #717807

Linear OA(944, 87, F9, 26) (dual of [87, 43, 27]-code), using construction XX applied to C1 = C([78,22]), C2 = C([0,23]), C3 = C1 + C2 = C([0,22]), and C∩ = C1 ∩ C2 = C([78,23]) based on
  1. linear OA(941, 80, F9, 25) (dual of [80, 39, 26]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−2,−1,…,22}, and designed minimum distance d ≥ |I|+1 = 26 [i]
  2. linear OA(939, 80, F9, 24) (dual of [80, 41, 25]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,23], and designed minimum distance d ≥ |I|+1 = 25 [i]
  3. linear OA(943, 80, F9, 26) (dual of [80, 37, 27]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−2,−1,…,23}, and designed minimum distance d ≥ |I|+1 = 27 [i]
  4. linear OA(937, 80, F9, 23) (dual of [80, 43, 24]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,22], and designed minimum distance d ≥ |I|+1 = 24 [i]
  5. linear OA(91, 5, F9, 1) (dual of [5, 4, 2]-code), using
  6. linear OA(90, 2, F9, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.