Information on Result #717820

Linear OA(967, 110, F9, 35) (dual of [110, 43, 36]-code), using construction XX applied to C1 = C([69,22]), C2 = C([0,23]), C3 = C1 + C2 = C([0,22]), and C∩ = C1 ∩ C2 = C([69,23]) based on
  1. linear OA(952, 80, F9, 34) (dual of [80, 28, 35]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−11,−10,…,22}, and designed minimum distance d ≥ |I|+1 = 35 [i]
  2. linear OA(939, 80, F9, 24) (dual of [80, 41, 25]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,23], and designed minimum distance d ≥ |I|+1 = 25 [i]
  3. linear OA(954, 80, F9, 35) (dual of [80, 26, 36]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−11,−10,…,23}, and designed minimum distance d ≥ |I|+1 = 36 [i]
  4. linear OA(937, 80, F9, 23) (dual of [80, 43, 24]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,22], and designed minimum distance d ≥ |I|+1 = 24 [i]
  5. linear OA(913, 28, F9, 10) (dual of [28, 15, 11]-code), using
  6. linear OA(90, 2, F9, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(967, 55, F9, 2, 35) (dual of [(55, 2), 43, 36]-NRT-code) [i]OOA Folding