Information on Result #717821

Linear OA(959, 105, F9, 32) (dual of [105, 46, 33]-code), using construction XX applied to C1 = C([11,39]), C2 = C([8,31]), C3 = C1 + C2 = C([11,31]), and C∩ = C1 ∩ C2 = C([8,39]) based on
  1. linear OA(944, 80, F9, 29) (dual of [80, 36, 30]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {11,12,…,39}, and designed minimum distance d ≥ |I|+1 = 30 [i]
  2. linear OA(939, 80, F9, 24) (dual of [80, 41, 25]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {8,9,…,31}, and designed minimum distance d ≥ |I|+1 = 25 [i]
  3. linear OA(949, 80, F9, 32) (dual of [80, 31, 33]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {8,9,…,39}, and designed minimum distance d ≥ |I|+1 = 33 [i]
  4. linear OA(934, 80, F9, 21) (dual of [80, 46, 22]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {11,12,…,31}, and designed minimum distance d ≥ |I|+1 = 22 [i]
  5. linear OA(98, 18, F9, 7) (dual of [18, 10, 8]-code), using
  6. linear OA(92, 7, F9, 2) (dual of [7, 5, 3]-code or 7-arc in PG(1,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.