Information on Result #717829

Linear OA(956, 99, F9, 32) (dual of [99, 43, 33]-code), using construction XX applied to C1 = C([0,30]), C2 = C([8,31]), C3 = C1 + C2 = C([8,30]), and C∩ = C1 ∩ C2 = C([0,31]) based on
  1. linear OA(946, 80, F9, 31) (dual of [80, 34, 32]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,30], and designed minimum distance d ≥ |I|+1 = 32 [i]
  2. linear OA(939, 80, F9, 24) (dual of [80, 41, 25]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {8,9,…,31}, and designed minimum distance d ≥ |I|+1 = 25 [i]
  3. linear OA(948, 80, F9, 32) (dual of [80, 32, 33]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,31], and designed minimum distance d ≥ |I|+1 = 33 [i]
  4. linear OA(937, 80, F9, 23) (dual of [80, 43, 24]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {8,9,…,30}, and designed minimum distance d ≥ |I|+1 = 24 [i]
  5. linear OA(98, 17, F9, 7) (dual of [17, 9, 8]-code), using
  6. linear OA(90, 2, F9, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.