Information on Result #717841

Linear OA(971, 116, F9, 36) (dual of [116, 45, 37]-code), using construction XX applied to C1 = C([69,21]), C2 = C([0,24]), C3 = C1 + C2 = C([0,21]), and C∩ = C1 ∩ C2 = C([69,24]) based on
  1. linear OA(950, 80, F9, 33) (dual of [80, 30, 34]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−11,−10,…,21}, and designed minimum distance d ≥ |I|+1 = 34 [i]
  2. linear OA(941, 80, F9, 25) (dual of [80, 39, 26]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,24], and designed minimum distance d ≥ |I|+1 = 26 [i]
  3. linear OA(956, 80, F9, 36) (dual of [80, 24, 37]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−11,−10,…,24}, and designed minimum distance d ≥ |I|+1 = 37 [i]
  4. linear OA(935, 80, F9, 22) (dual of [80, 45, 23]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,21], and designed minimum distance d ≥ |I|+1 = 23 [i]
  5. linear OA(913, 28, F9, 10) (dual of [28, 15, 11]-code), using
  6. linear OA(92, 8, F9, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(971, 58, F9, 2, 36) (dual of [(58, 2), 45, 37]-NRT-code) [i]OOA Folding