Information on Result #717844

Linear OA(970, 113, F9, 36) (dual of [113, 43, 37]-code), using construction XX applied to C1 = C([69,22]), C2 = C([0,24]), C3 = C1 + C2 = C([0,22]), and C∩ = C1 ∩ C2 = C([69,24]) based on
  1. linear OA(952, 80, F9, 34) (dual of [80, 28, 35]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−11,−10,…,22}, and designed minimum distance d ≥ |I|+1 = 35 [i]
  2. linear OA(941, 80, F9, 25) (dual of [80, 39, 26]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,24], and designed minimum distance d ≥ |I|+1 = 26 [i]
  3. linear OA(956, 80, F9, 36) (dual of [80, 24, 37]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−11,−10,…,24}, and designed minimum distance d ≥ |I|+1 = 37 [i]
  4. linear OA(937, 80, F9, 23) (dual of [80, 43, 24]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,22], and designed minimum distance d ≥ |I|+1 = 24 [i]
  5. linear OA(913, 28, F9, 10) (dual of [28, 15, 11]-code), using
  6. linear OA(91, 5, F9, 1) (dual of [5, 4, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.