Information on Result #717862

Linear OA(959, 102, F9, 33) (dual of [102, 43, 34]-code), using construction XX applied to C1 = C([0,30]), C2 = C([8,32]), C3 = C1 + C2 = C([8,30]), and C∩ = C1 ∩ C2 = C([0,32]) based on
  1. linear OA(946, 80, F9, 31) (dual of [80, 34, 32]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,30], and designed minimum distance d ≥ |I|+1 = 32 [i]
  2. linear OA(941, 80, F9, 25) (dual of [80, 39, 26]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {8,9,…,32}, and designed minimum distance d ≥ |I|+1 = 26 [i]
  3. linear OA(950, 80, F9, 33) (dual of [80, 30, 34]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,32], and designed minimum distance d ≥ |I|+1 = 34 [i]
  4. linear OA(937, 80, F9, 23) (dual of [80, 43, 24]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {8,9,…,30}, and designed minimum distance d ≥ |I|+1 = 24 [i]
  5. linear OA(98, 17, F9, 7) (dual of [17, 9, 8]-code), using
  6. linear OA(91, 5, F9, 1) (dual of [5, 4, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(959, 51, F9, 2, 33) (dual of [(51, 2), 43, 34]-NRT-code) [i]OOA Folding