Information on Result #717865

Linear OA(945, 84, F9, 27) (dual of [84, 39, 28]-code), using construction XX applied to C1 = C([79,24]), C2 = C([0,25]), C3 = C1 + C2 = C([0,24]), and C∩ = C1 ∩ C2 = C([79,25]) based on
  1. linear OA(943, 80, F9, 26) (dual of [80, 37, 27]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−1,0,…,24}, and designed minimum distance d ≥ |I|+1 = 27 [i]
  2. linear OA(943, 80, F9, 26) (dual of [80, 37, 27]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,25], and designed minimum distance d ≥ |I|+1 = 27 [i]
  3. linear OA(945, 80, F9, 27) (dual of [80, 35, 28]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−1,0,…,25}, and designed minimum distance d ≥ |I|+1 = 28 [i]
  4. linear OA(941, 80, F9, 25) (dual of [80, 39, 26]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,24], and designed minimum distance d ≥ |I|+1 = 26 [i]
  5. linear OA(90, 2, F9, 0) (dual of [2, 2, 1]-code), using
  6. linear OA(90, 2, F9, 0) (dual of [2, 2, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(945, 42, F9, 2, 27) (dual of [(42, 2), 39, 28]-NRT-code) [i]OOA Folding