Information on Result #717872

Linear OA(967, 111, F9, 35) (dual of [111, 44, 36]-code), using construction XX applied to C1 = C([10,40]), C2 = C([6,31]), C3 = C1 + C2 = C([10,31]), and C∩ = C1 ∩ C2 = C([6,40]) based on
  1. linear OA(946, 80, F9, 31) (dual of [80, 34, 32]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {10,11,…,40}, and designed minimum distance d ≥ |I|+1 = 32 [i]
  2. linear OA(943, 80, F9, 26) (dual of [80, 37, 27]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {6,7,…,31}, and designed minimum distance d ≥ |I|+1 = 27 [i]
  3. linear OA(954, 80, F9, 35) (dual of [80, 26, 36]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {6,7,…,40}, and designed minimum distance d ≥ |I|+1 = 36 [i]
  4. linear OA(935, 80, F9, 22) (dual of [80, 45, 23]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {10,11,…,31}, and designed minimum distance d ≥ |I|+1 = 23 [i]
  5. linear OA(99, 19, F9, 8) (dual of [19, 10, 9]-code), using
  6. linear OA(94, 12, F9, 3) (dual of [12, 8, 4]-code or 12-cap in PG(3,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.