Information on Result #717883

Linear OA(963, 101, F9, 35) (dual of [101, 38, 36]-code), using construction XX applied to C1 = C([7,40]), C2 = C([6,31]), C3 = C1 + C2 = C([7,31]), and C∩ = C1 ∩ C2 = C([6,40]) based on
  1. linear OA(952, 80, F9, 34) (dual of [80, 28, 35]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {7,8,…,40}, and designed minimum distance d ≥ |I|+1 = 35 [i]
  2. linear OA(943, 80, F9, 26) (dual of [80, 37, 27]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {6,7,…,31}, and designed minimum distance d ≥ |I|+1 = 27 [i]
  3. linear OA(954, 80, F9, 35) (dual of [80, 26, 36]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {6,7,…,40}, and designed minimum distance d ≥ |I|+1 = 36 [i]
  4. linear OA(941, 80, F9, 25) (dual of [80, 39, 26]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {7,8,…,31}, and designed minimum distance d ≥ |I|+1 = 26 [i]
  5. linear OA(99, 19, F9, 8) (dual of [19, 10, 9]-code), using
  6. linear OA(90, 2, F9, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.