Information on Result #717898

Linear OA(961, 102, F9, 34) (dual of [102, 41, 35]-code), using construction XX applied to C1 = C([9,40]), C2 = C([7,32]), C3 = C1 + C2 = C([9,32]), and C∩ = C1 ∩ C2 = C([7,40]) based on
  1. linear OA(948, 80, F9, 32) (dual of [80, 32, 33]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {9,10,…,40}, and designed minimum distance d ≥ |I|+1 = 33 [i]
  2. linear OA(943, 80, F9, 26) (dual of [80, 37, 27]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {7,8,…,32}, and designed minimum distance d ≥ |I|+1 = 27 [i]
  3. linear OA(952, 80, F9, 34) (dual of [80, 28, 35]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {7,8,…,40}, and designed minimum distance d ≥ |I|+1 = 35 [i]
  4. linear OA(939, 80, F9, 24) (dual of [80, 41, 25]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {9,10,…,32}, and designed minimum distance d ≥ |I|+1 = 25 [i]
  5. linear OA(98, 17, F9, 7) (dual of [17, 9, 8]-code), using
  6. linear OA(91, 5, F9, 1) (dual of [5, 4, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(961, 51, F9, 2, 34) (dual of [(51, 2), 41, 35]-NRT-code) [i]OOA Folding