Information on Result #717903

Linear OA(956, 94, F9, 33) (dual of [94, 38, 34]-code), using construction XX applied to C1 = C([79,29]), C2 = C([5,31]), C3 = C1 + C2 = C([5,29]), and C∩ = C1 ∩ C2 = C([79,31]) based on
  1. linear OA(947, 80, F9, 31) (dual of [80, 33, 32]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−1,0,…,29}, and designed minimum distance d ≥ |I|+1 = 32 [i]
  2. linear OA(945, 80, F9, 27) (dual of [80, 35, 28]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {5,6,…,31}, and designed minimum distance d ≥ |I|+1 = 28 [i]
  3. linear OA(950, 80, F9, 33) (dual of [80, 30, 34]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−1,0,…,31}, and designed minimum distance d ≥ |I|+1 = 34 [i]
  4. linear OA(942, 80, F9, 25) (dual of [80, 38, 26]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {5,6,…,29}, and designed minimum distance d ≥ |I|+1 = 26 [i]
  5. linear OA(95, 10, F9, 5) (dual of [10, 5, 6]-code or 10-arc in PG(4,9)), using
  6. linear OA(91, 4, F9, 1) (dual of [4, 3, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(956, 47, F9, 2, 33) (dual of [(47, 2), 38, 34]-NRT-code) [i]OOA Folding