Information on Result #717939

Linear OA(959, 98, F9, 34) (dual of [98, 39, 35]-code), using construction XX applied to C1 = C([0,30]), C2 = C([6,33]), C3 = C1 + C2 = C([6,30]), and C∩ = C1 ∩ C2 = C([0,33]) based on
  1. linear OA(946, 80, F9, 31) (dual of [80, 34, 32]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,30], and designed minimum distance d ≥ |I|+1 = 32 [i]
  2. linear OA(947, 80, F9, 28) (dual of [80, 33, 29]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {6,7,…,33}, and designed minimum distance d ≥ |I|+1 = 29 [i]
  3. linear OA(952, 80, F9, 34) (dual of [80, 28, 35]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,33], and designed minimum distance d ≥ |I|+1 = 35 [i]
  4. linear OA(941, 80, F9, 25) (dual of [80, 39, 26]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {6,7,…,30}, and designed minimum distance d ≥ |I|+1 = 26 [i]
  5. linear OA(95, 10, F9, 5) (dual of [10, 5, 6]-code or 10-arc in PG(4,9)), using
  6. linear OA(92, 8, F9, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(959, 49, F9, 2, 34) (dual of [(49, 2), 39, 35]-NRT-code) [i]OOA Folding