Information on Result #717948

Linear OA(974, 119, F9, 39) (dual of [119, 45, 40]-code), using construction XX applied to C1 = C([10,39]), C2 = C([1,29]), C3 = C1 + C2 = C([10,29]), and C∩ = C1 ∩ C2 = C([1,39]) based on
  1. linear OA(945, 80, F9, 30) (dual of [80, 35, 31]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {10,11,…,39}, and designed minimum distance d ≥ |I|+1 = 31 [i]
  2. linear OA(944, 80, F9, 29) (dual of [80, 36, 30]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,29], and designed minimum distance d ≥ |I|+1 = 30 [i]
  3. linear OA(955, 80, F9, 39) (dual of [80, 25, 40]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,39], and designed minimum distance d ≥ |I|+1 = 40 [i]
  4. linear OA(932, 80, F9, 20) (dual of [80, 48, 21]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {10,11,…,29}, and designed minimum distance d ≥ |I|+1 = 21 [i]
  5. linear OA(910, 20, F9, 9) (dual of [20, 10, 10]-code), using
  6. linear OA(99, 19, F9, 8) (dual of [19, 10, 9]-code), using
    • 1 times truncation [i] based on linear OA(910, 20, F9, 9) (dual of [20, 10, 10]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(974, 119, F9, 38) (dual of [119, 45, 39]-code) [i]Strength Reduction
2Linear OA(972, 117, F9, 37) (dual of [117, 45, 38]-code) [i]Truncation