Information on Result #717964

Linear OA(969, 106, F9, 39) (dual of [106, 37, 40]-code), using construction XX applied to C1 = C([6,39]), C2 = C([1,29]), C3 = C1 + C2 = C([6,29]), and C∩ = C1 ∩ C2 = C([1,39]) based on
  1. linear OA(953, 80, F9, 34) (dual of [80, 27, 35]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {6,7,…,39}, and designed minimum distance d ≥ |I|+1 = 35 [i]
  2. linear OA(944, 80, F9, 29) (dual of [80, 36, 30]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,29], and designed minimum distance d ≥ |I|+1 = 30 [i]
  3. linear OA(955, 80, F9, 39) (dual of [80, 25, 40]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,39], and designed minimum distance d ≥ |I|+1 = 40 [i]
  4. linear OA(940, 80, F9, 24) (dual of [80, 40, 25]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {6,7,…,29}, and designed minimum distance d ≥ |I|+1 = 25 [i]
  5. linear OA(910, 20, F9, 9) (dual of [20, 10, 10]-code), using
  6. linear OA(94, 6, F9, 4) (dual of [6, 2, 5]-code or 6-arc in PG(3,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.