Information on Result #717967

Linear OA(974, 114, F9, 40) (dual of [114, 40, 41]-code), using construction XX applied to C1 = C([7,40]), C2 = C([1,29]), C3 = C1 + C2 = C([7,29]), and C∩ = C1 ∩ C2 = C([1,40]) based on
  1. linear OA(952, 80, F9, 34) (dual of [80, 28, 35]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {7,8,…,40}, and designed minimum distance d ≥ |I|+1 = 35 [i]
  2. linear OA(944, 80, F9, 29) (dual of [80, 36, 30]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,29], and designed minimum distance d ≥ |I|+1 = 30 [i]
  3. linear OA(956, 80, F9, 40) (dual of [80, 24, 41]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,40], and designed minimum distance d ≥ |I|+1 = 41 [i]
  4. linear OA(938, 80, F9, 23) (dual of [80, 42, 24]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {7,8,…,29}, and designed minimum distance d ≥ |I|+1 = 24 [i]
  5. linear OA(913, 25, F9, 10) (dual of [25, 12, 11]-code), using
  6. linear OA(95, 9, F9, 5) (dual of [9, 4, 6]-code or 9-arc in PG(4,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.