Information on Result #718000

Linear OA(971, 108, F9, 40) (dual of [108, 37, 41]-code), using construction XX applied to C1 = C([6,39]), C2 = C([0,29]), C3 = C1 + C2 = C([6,29]), and C∩ = C1 ∩ C2 = C([0,39]) based on
  1. linear OA(953, 80, F9, 34) (dual of [80, 27, 35]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {6,7,…,39}, and designed minimum distance d ≥ |I|+1 = 35 [i]
  2. linear OA(945, 80, F9, 30) (dual of [80, 35, 31]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,29], and designed minimum distance d ≥ |I|+1 = 31 [i]
  3. linear OA(956, 80, F9, 40) (dual of [80, 24, 41]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,39], and designed minimum distance d ≥ |I|+1 = 41 [i]
  4. linear OA(940, 80, F9, 24) (dual of [80, 40, 25]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {6,7,…,29}, and designed minimum distance d ≥ |I|+1 = 25 [i]
  5. linear OA(910, 20, F9, 9) (dual of [20, 10, 10]-code), using
  6. linear OA(95, 8, F9, 5) (dual of [8, 3, 6]-code or 8-arc in PG(4,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(971, 54, F9, 2, 40) (dual of [(54, 2), 37, 41]-NRT-code) [i]OOA Folding