Information on Result #718001

Linear OA(981, 123, F9, 42) (dual of [123, 42, 43]-code), using construction XX applied to C1 = C([8,41]), C2 = C([0,29]), C3 = C1 + C2 = C([8,29]), and C∩ = C1 ∩ C2 = C([0,41]) based on
  1. linear OA(952, 80, F9, 34) (dual of [80, 28, 35]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {8,9,…,41}, and designed minimum distance d ≥ |I|+1 = 35 [i]
  2. linear OA(945, 80, F9, 30) (dual of [80, 35, 31]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,29], and designed minimum distance d ≥ |I|+1 = 31 [i]
  3. linear OA(959, 80, F9, 42) (dual of [80, 21, 43]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,41], and designed minimum distance d ≥ |I|+1 = 43 [i]
  4. linear OA(936, 80, F9, 22) (dual of [80, 44, 23]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {8,9,…,29}, and designed minimum distance d ≥ |I|+1 = 23 [i]
  5. linear OA(914, 28, F9, 11) (dual of [28, 14, 12]-code), using
  6. linear OA(98, 15, F9, 7) (dual of [15, 7, 8]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.