Information on Result #718006

Linear OA(980, 120, F9, 42) (dual of [120, 40, 43]-code), using construction XX applied to C1 = C([7,41]), C2 = C([0,29]), C3 = C1 + C2 = C([7,29]), and C∩ = C1 ∩ C2 = C([0,41]) based on
  1. linear OA(954, 80, F9, 35) (dual of [80, 26, 36]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {7,8,…,41}, and designed minimum distance d ≥ |I|+1 = 36 [i]
  2. linear OA(945, 80, F9, 30) (dual of [80, 35, 31]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,29], and designed minimum distance d ≥ |I|+1 = 31 [i]
  3. linear OA(959, 80, F9, 42) (dual of [80, 21, 43]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,41], and designed minimum distance d ≥ |I|+1 = 43 [i]
  4. linear OA(938, 80, F9, 23) (dual of [80, 42, 24]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {7,8,…,29}, and designed minimum distance d ≥ |I|+1 = 24 [i]
  5. linear OA(914, 28, F9, 11) (dual of [28, 14, 12]-code), using
  6. linear OA(97, 12, F9, 6) (dual of [12, 5, 7]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.