Information on Result #718020

Linear OA(958, 94, F9, 35) (dual of [94, 36, 36]-code), using construction XX applied to C1 = C([77,29]), C2 = C([1,31]), C3 = C1 + C2 = C([1,29]), and C∩ = C1 ∩ C2 = C([77,31]) based on
  1. linear OA(951, 80, F9, 33) (dual of [80, 29, 34]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−3,−2,…,29}, and designed minimum distance d ≥ |I|+1 = 34 [i]
  2. linear OA(947, 80, F9, 31) (dual of [80, 33, 32]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,31], and designed minimum distance d ≥ |I|+1 = 32 [i]
  3. linear OA(954, 80, F9, 35) (dual of [80, 26, 36]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−3,−2,…,31}, and designed minimum distance d ≥ |I|+1 = 36 [i]
  4. linear OA(944, 80, F9, 29) (dual of [80, 36, 30]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,29], and designed minimum distance d ≥ |I|+1 = 30 [i]
  5. linear OA(93, 10, F9, 3) (dual of [10, 7, 4]-code or 10-arc in PG(2,9) or 10-cap in PG(2,9)), using
  6. linear OA(91, 4, F9, 1) (dual of [4, 3, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(957, 93, F9, 34) (dual of [93, 36, 35]-code) [i]Truncation
2Linear OA(959, 96, F9, 35) (dual of [96, 37, 36]-code) [i]Construction X with VarÅ¡amov Bound
3Linear OOA(958, 47, F9, 2, 35) (dual of [(47, 2), 36, 36]-NRT-code) [i]OOA Folding