Information on Result #718027

Linear OA(982, 118, F9, 44) (dual of [118, 36, 45]-code), using construction XX applied to C1 = C([68,29]), C2 = C([1,31]), C3 = C1 + C2 = C([1,29]), and C∩ = C1 ∩ C2 = C([68,31]) based on
  1. linear OA(960, 80, F9, 42) (dual of [80, 20, 43]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−12,−11,…,29}, and designed minimum distance d ≥ |I|+1 = 43 [i]
  2. linear OA(947, 80, F9, 31) (dual of [80, 33, 32]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,31], and designed minimum distance d ≥ |I|+1 = 32 [i]
  3. linear OA(963, 80, F9, 44) (dual of [80, 17, 45]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−12,−11,…,31}, and designed minimum distance d ≥ |I|+1 = 45 [i]
  4. linear OA(944, 80, F9, 29) (dual of [80, 36, 30]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,29], and designed minimum distance d ≥ |I|+1 = 30 [i]
  5. linear OA(918, 34, F9, 12) (dual of [34, 16, 13]-code), using
  6. linear OA(91, 4, F9, 1) (dual of [4, 3, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.