Information on Result #718034

Linear OA(950, 84, F9, 33) (dual of [84, 34, 34]-code), using construction XX applied to C1 = C([79,30]), C2 = C([0,31]), C3 = C1 + C2 = C([0,30]), and C∩ = C1 ∩ C2 = C([79,31]) based on
  1. linear OA(948, 80, F9, 32) (dual of [80, 32, 33]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−1,0,…,30}, and designed minimum distance d ≥ |I|+1 = 33 [i]
  2. linear OA(948, 80, F9, 32) (dual of [80, 32, 33]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,31], and designed minimum distance d ≥ |I|+1 = 33 [i]
  3. linear OA(950, 80, F9, 33) (dual of [80, 30, 34]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−1,0,…,31}, and designed minimum distance d ≥ |I|+1 = 34 [i]
  4. linear OA(946, 80, F9, 31) (dual of [80, 34, 32]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,30], and designed minimum distance d ≥ |I|+1 = 32 [i]
  5. linear OA(90, 2, F9, 0) (dual of [2, 2, 1]-code), using
  6. linear OA(90, 2, F9, 0) (dual of [2, 2, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(957, 98, F9, 33) (dual of [98, 41, 34]-code) [i]VarÅ¡amov–Edel Lengthening
2Linear OA(958, 103, F9, 33) (dual of [103, 45, 34]-code) [i]
3Linear OOA(950, 42, F9, 2, 33) (dual of [(42, 2), 34, 34]-NRT-code) [i]OOA Folding