Information on Result #718051

Linear OA(957, 80, F9, 41) (dual of [80, 23, 42]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−10,−9,…,30}, and designed minimum distance d ≥ |I|+1 = 42

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(9136, 158, F9, 83) (dual of [158, 22, 84]-code) [i]Repeating Each Code Word
2Linear OA(9135, 156, F9, 83) (dual of [156, 21, 84]-code) [i]
3Linear OA(9134, 154, F9, 83) (dual of [154, 20, 84]-code) [i]
4Linear OA(9133, 152, F9, 83) (dual of [152, 19, 84]-code) [i]
5Linear OA(9132, 150, F9, 83) (dual of [150, 18, 84]-code) [i]
6Linear OA(9131, 148, F9, 83) (dual of [148, 17, 84]-code) [i]
7Linear OA(3194, 240, F3, 83) (dual of [240, 46, 84]-code) [i]Concatenation of Two Codes
8Linear OA(3193, 237, F3, 83) (dual of [237, 44, 84]-code) [i]
9Linear OA(3192, 234, F3, 83) (dual of [234, 42, 84]-code) [i]
10Linear OA(3191, 231, F3, 83) (dual of [231, 40, 84]-code) [i]
11Linear OA(3190, 228, F3, 83) (dual of [228, 38, 84]-code) [i]
12Linear OA(3189, 225, F3, 83) (dual of [225, 36, 84]-code) [i]
13Linear OA(3188, 222, F3, 83) (dual of [222, 34, 84]-code) [i]
14Linear OA(969, 102, F9, 42) (dual of [102, 33, 43]-code) [i]Construction XX with Cyclic Codes
15Linear OA(972, 105, F9, 43) (dual of [105, 33, 44]-code) [i]
16Linear OA(975, 108, F9, 44) (dual of [108, 33, 45]-code) [i]
17Linear OA(984, 116, F9, 50) (dual of [116, 32, 51]-code) [i]