Information on Result #718059

Linear OA(960, 95, F9, 36) (dual of [95, 35, 37]-code), using construction XX applied to C1 = C([77,30]), C2 = C([1,32]), C3 = C1 + C2 = C([1,30]), and C∩ = C1 ∩ C2 = C([77,32]) based on
  1. linear OA(952, 80, F9, 34) (dual of [80, 28, 35]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−3,−2,…,30}, and designed minimum distance d ≥ |I|+1 = 35 [i]
  2. linear OA(949, 80, F9, 32) (dual of [80, 31, 33]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,32], and designed minimum distance d ≥ |I|+1 = 33 [i]
  3. linear OA(956, 80, F9, 36) (dual of [80, 24, 37]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−3,−2,…,32}, and designed minimum distance d ≥ |I|+1 = 37 [i]
  4. linear OA(945, 80, F9, 30) (dual of [80, 35, 31]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,30], and designed minimum distance d ≥ |I|+1 = 31 [i]
  5. linear OA(93, 10, F9, 3) (dual of [10, 7, 4]-code or 10-arc in PG(2,9) or 10-cap in PG(2,9)), using
  6. linear OA(91, 5, F9, 1) (dual of [5, 4, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.